Abstract

One of the critical issues for electret/triboelectric devices is the poor charge viability and stability in humid environments. Herein, we propose a new origami-inspired “W-tube”-shaped triboelectric nanogenerator (W-TENG) with two thin-film electrets folded based on Miura-origami. The Miura-origami fold is capable of transforming flat materials with large surface areas into reduced and compressed complex 3D structures with parallelogram tessellations. The triboelectric power generation components can thus be hermetically sealed inside the “W-tube” to avoid contact with the external humid environment. Furthermore, the elastic nature of the Miura-origami fold endows the proposed W-TENG device with excellent deformability, flexibility, and stretchability. Therefore, it is capable of harvesting kinetic energy from various directions and forms of movement, including horizontal pressing, vertical tapping, and lateral bending. The compact, light weight, and self-rebounding properties of the origami structure also make it convenient for integration into wearable devices. Various parameters of the W-TENG are intensively investigated, including the number of power generation units, original height of the device, acceleration magnitude, excitation direction, and water-proof capability. Triggered by hand tapping impulse excitation in the horizontal and vertical directions, the instantaneous open-circuit voltages can reach 791 V and 116 V with remarkable optimum powers of 691 μW at 50 MΩ and 220 μW at 35 MΩ, respectively. The outcomes of this work demonstrate the fusion of the ancient art of origami, material science, and energy conversion techniques to realize flexible, multifunctional, and water-proof TENG devices.

Highlights

  • Recent advances in the internet of things (IoT) and flexible electronics have given rise to the rapid expansion of flexible sensing devices, roll-up displays, soft robots, and bioinspired artificial skins[1,2,3,4]

  • This paper proposes a new type of “W-tube”-shaped triboelectric nanogenerator (W-Triboelectric nanogenerators (TENGs)) with two pieces of thin-film electrets folded based on Miura-origami

  • The fabricated W-TENG prototype is characterized under sinusoidal and impulse excitations in both the horizontal and vertical directions

Read more

Summary

Introduction

Recent advances in the internet of things (IoT) and flexible electronics have given rise to the rapid expansion of flexible sensing devices, roll-up displays, soft robots, and bioinspired artificial skins[1,2,3,4]. These lowpower electronic devices pose a challenge to cheap, flexible, portable, and sustainable energy resources[5,6,7,8].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.