Abstract

Modelling and simulation of heart valves is a challenging biomechanical problem due to anatomical variability, pulsatile physiological pressure loads and 3D anisotropic material behaviour. Current valvular models based on the finite element method can be divided into: those that do model the interaction between the blood and the valve (fluid–structure interaction or ‘wet’ models) and those that do not (structural models or ‘dry’ models). Here an anatomically sized model of the mitral valve has been used to compare the difference between structural and fluid–structure interaction techniques in two separately simulated scenarios: valve closure and a cardiac cycle. Using fluid–structure interaction, the valve has been modelled separately in a straight tubular volume and in a U-shaped ventricular volume, in order to analyse the difference in the coupled fluid and structural dynamics between the two geometries. The results of the structural and fluid–structure interaction models have shown that the stress distribution in the closure simulation is similar in all the models, but the magnitude and closed configuration differ. In the cardiac cycle simulation significant differences in the valvular dynamics were found between the structural and fluid–structure interaction models due to difference in applied pressure loads. Comparison of the fluid domains of the fluid–structure interaction models have shown that the ventricular geometry generates slower fluid velocity with increased vorticity compared to the tubular geometry. In conclusion, structural heart valve models are suitable for simulation of static configurations (opened or closed valves), but in order to simulate full dynamic behaviour fluid–structure interaction models are required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.