Abstract

The role of afferent target interactions in dendritic plasticity within the adult brain remains poorly understood. There is a paucity of data regarding the effects of deafferentation and subsequent dendritic recovery in adult brain structures. Moreover, although adult zebrafish demonstrate ongoing growth, investigations into the impact of growth on mitral cell (MC) dendritic arbor structure and complexity are lacking. Leveraging the regenerative capabilities of the zebrafish olfactory system, we conducted a comprehensive study to address these gaps. Employing an eight-week reversible deafferentation injury model followed by retrograde labeling, we observed substantial morphological alterations in MC dendrites. Our hypothesis posited that cessation of injury would facilitate recovery of MC dendritic arbor structure and complexity, potentially influenced by growth dynamics. Statistical analyses revealed significant changes in MC dendritic morphology following growth and recovery periods, indicating that MC total dendritic branch length retained significance after 8 weeks of deafferentation injury when normalized to individual fish physical characteristics. This suggests that regeneration of branch length could potentially function relatively independently of growth-related changes. These findings underscore the remarkable plasticity of adult dendritic arbor structures in a sophisticated model organism and highlight the efficacy of zebrafish as a vital implement for studying neuroregenerative processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call