Abstract

To evaluate the ability of the aqueous extract of Mitracarpus frigidus (MFAq) to inhibit lipid body formation and inflammatory mediator production in macrophages stimulated with lipopolysaccharide (LPS) and interferon gamma (IFN-γ). MFAq was chemically characterized by ultrafast liquid chromatography/quadruple time-of-flight tandem mass spectrometry. The macrophages obtained from mice were incubated with MFAq. Cell viability and membrane integrity were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and propidium iodide assays, respectively. Moreover, NO, reactive oxygen species (ROS), transforming growth factor beta (TGF-β), prostaglandin E2 (PGE2) levels and lipid bodies (LBs) were examined in macrophages that were stimulated with LPS and IFN-γ and treated with MFAq. Finally, molecular docking analysis was conducted to investigate the interaction of MFAq with the cyclooxygenase 2 (COX-2) enzyme. Chlorogenic acid, clarinoside, harounoside, rutin, kaempferol-3O-rutinoside and 2-azaanthraquinone were identified in MFAq. MFAq significantly inhibited NO, ROS and LBs, and did not affect the membrane integrity of macrophages. MFAq-treated cells showed significantly lower levels of TGF-β and PGE2. Molecular docking demonstrated that the compounds found in MFAq are able to inhibit COX-2 by binding to important residues in the catalytic site. MFAq interferes with lipid metabolism in stimulated macrophages, leading to the reduction of important inflammatory mediators. Furthermore, MFAq can directly inhibit the COX-2 enzyme or inhibit its expression owing to its ability to reduce NO production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call