Abstract

Mitra is a scalable storage manager that supports the display of continuous media data types, e.g., audio and video clips. It is a software based system that employs off-the-shelf hardware components. Its present hardware platform is a cluster of multi-disk workstations, connected using an ATM switch. Mitra supports the display of a mix of media types. To reduce the cost of storage, it supports a hierarchical organization of storage devices and stages the frequently accessed objects on the magnetic disks. For the number of displays to scale as a function of additional disks, Mitra employs staggered striping. It implements three strategies to maximize the number of simultaneous displays supported by each disk. First, the EVEREST file system allows different files (corresponding to objects of different media types) to be retrieved at different block size granularities. Second, the FIXB algorithm recognizes the different zones of a disk and guarantees a continuous display while harnessing the average disk transfer rate. Third, Mitra implements the Grouped Sweeping Scheme (GSS) to minimize the impact of disk seeks on the available disk bandwidth. In addition to reporting on implementation details of Mitra, we present performance results that demonstrate the scalability characteristics of the system. We compare the obtained results with theoretical expectations based on the bandwidth of participating disks. Mitra attains between 65% to 100% of the theoretical expectations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.