Abstract

Gold nanoparticles (AuNPs) have been widely used as drug delivery carriers for cancer targeting and therapy. In this study, we developed mitoxantrone (MX)-loaded poly(ethylene glycol)-modified AuNPs complexes (AuNPs-PEG-MX) and evaluated its physicochemical properties compared to AuNPs, free MX, and MX-loaded AuNPs (AuNPs-MX). The results of surface plasmon resonance (SPR) measurement provided corresponded characteristics of free MX and AuNP groups, which determined by electrophoretic light scattering (ELS) method. The hydrodynamic size of AuNPs-PEG-MX was lower than that of AuNPs-MX. Furthermore, loading efficiency of AuNPs-PEG-MX was 1.9-fold increased than AuNPs-MX. In addition, AuNPs-PEG-MX showed similar cytotoxicity compared to AuNPs-MX group in HeLa cells with enhanced drug release. Conclusively, AuNPs-PEG-MX could be applied for in vivo cancer therapy via passive targeting based on the enhanced permeability and retention effect after intravenous injection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call