Abstract

Mitoxantrone (MX) is the most common immunosuppressive drug used in patients with rapidly worsening multiple sclerosis (MS), whose disease is not controlled by β-interferon or glatiramer acetate. Although MX suppresses antigen-presenting cell (APC) and T-cell function in the periphery, its mechanism of action in the central nervous system (CNS) is not known. Given that MX can cross the disrupted blood–brain barrier, such as in MS patients, we in the present study have tested our hypothesis that MX in the CNS exerts cytotoxic and immunomodulatory effects on microglia, the major CNS-resident APCs that play a crucial role in MS pathogenesis. The cytotoxic effect of MX on microglial cells was determined by MTT and flow cytometry test, whereas the regulatory function was tested with enzyme-linked immunosorbent assay (ELISA) method. Indeed, we have found that MX induced microglial cell death in a dose-dependent manner, and the cell death was mainly from late apoptosis and necrosis. Further, MX induced significantly increased levels of interleukin (IL)-10 production of microglia, whereas IL-23p19 production/expression was significantly suppressed. Thus, our study for the first time demonstrates the immunosuppressive/regulatory effect of MX on microglia, which represents an important mechanism underlying the therapeutic effect of this drug on MS patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.