Abstract

Canonical Wnt signaling is thought to regulate cell behavior mainly by inducing β-catenin-dependent transcription of target genes. In proliferating cells Wnt signaling peaks in the G2/M phase of the cell cycle, but the significance of this "mitotic Wnt signaling" is unclear. Here we introduce Wnt-dependent stabilization of proteins (Wnt/STOP), which is independent of β-catenin and peaks during mitosis. We show that Wnt/STOP plays a critical role in protecting proteins, including c-MYC, from GSK3-dependent polyubiquitination and degradation. Wnt/STOP signaling increases cellular protein levels and cell size. Wnt/STOP, rather than β-catenin signaling, is the dominant mode of Wnt signaling in several cancer cell lines, where it is required for cell growth. We propose that Wnt/STOP signaling slows down protein degradation as cells prepare to divide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.