Abstract

Proper organization of the mitotic spindle is key to genetic stability, but molecular components of inter-microtubule bridges that crosslink kinetochore fibers (K-fibers) are still largely unknown. Here we identify a kinase-independent function of class II phosphoinositide 3-OH kinase α (PI3K-C2α) acting as limiting scaffold protein organizing clathrin and TACC3 complex crosslinking K-fibers. Downregulation of PI3K-C2α causes spindle alterations, delayed anaphase onset, and aneuploidy, indicating that PI3K-C2α expression is required for genomic stability. Reduced abundance of PI3K-C2α in breast cancer models initially impairs tumor growth but later leads to the convergent evolution of fast-growing clones with mitotic checkpoint defects. As a consequence of altered spindle, loss of PI3K-C2α increases sensitivity to taxane-based therapy in pre-clinical models and in neoadjuvant settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.