Abstract

The disassembly of eukaryotic replisome during replication termination is mediated by CRL-dependent poly-ubiquitylation of Mcm7 and p97 segregase. The replisome also disassembles at stalled or collapsed replication forks under certain stress conditions, but the underlying mechanism is poorly understood. Here, we discovered a novel pathway driving stepwise disassembly of the replisome at stalled replication forks after forced entry into M-phase using Xenopus egg extracts. This pathway was dependent on M-CDK activity and K48- and K63-linked poly-ubiquitylation but not on CRL and p97, which is different from known pathways. Furthermore, this pathway could not disassemble converged replisomes whose Mcm7 subunit had been poly-ubiquitylated without p97. These results suggest that there is a distinctive pathway for replisome disassembly when stalled replication forks persist into M-phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.