Abstract
The accumulation of gross chromosomal rearrangements (GCRs) is characteristic of cancer cells. Multiple pathways that prevent GCRs, including S-phase cell cycle checkpoints, homologous recombination, telomere maintenance, suppression of de novo telomere addition, chromatin assembly, and mismatch repair, have been identified in Saccharomyces cerevisiae. However, pathways that promote the formation of GCRs are not as well understood. Of these, the de novo telomere addition pathway and nonhomologous end-joining are the best characterized. Here, we demonstrate that defects in the mitotic checkpoint and the mitotic exit network can suppress GCRs in strains containing defects that increase the GCR rate. These data suggest that functional mitotic checkpoints can play a role in the formation of genome rearrangements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.