Abstract

We investigated the effects of the non-phorbol tumor promoter okadaic acid on human leukemia K562 cells. It was found that okadaic acid potently and reversibly inhibited cell growth, with a nearly complete inhibition of thymidine uptake seen at about 10 nM. The cytotoxicity of okadaic acid was characterized by a marked mitotic arrest of the cells exhibiting scattered chromosomes and abnormal anaphase-like structures, a phenomenon distinct from the typical metaphase arrest caused by colchicine. Okadaic acid (10-1,000 nM) greatly stimulated phosphorylation of a number of nuclear proteins in K562 cells. Phosphorylation of many of the same proteins was also stimulated by 12-O-tetradecanoylphorbol-13-O-acetate, a protein kinase C activator. The present findings, consistent with recent reports that okadaic acid is a potent inhibitor of protein phosphatases 1 and 2A (PP1 and PP2A) shown to be essential for normal mitosis, provided evidence for the first time that okadaic acid inhibition of PP1/PP2A resulted in enhanced nuclear protein phosphorylation and subsequent mitotic arrest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call