Abstract

Despite the clinical advances in cancer treatment, the high mortality rate is still a great challenge, requiring much effort to find new and efficient cancer therapies. AimsThe present evidence investigated the potential antiproliferative impact of the mitochondrial-targeted antioxidant, Mitoquinol (MitoQ), on a mouse model of Ehrlich ascites carcinoma (EAC). Main methodsMice-bearing tumors were administered two doses of MitoQ (0.3 mg & 0.5 mg/kg; i.p daily) or doxorubicin (2 mg/kg; i.p daily) for 20 days. Key findingsEAC mice revealed exacerbated mitochondrial reactive oxygen species (mtROS) and impaired mitochondrial membrane potential (△Ψm). Dysfunctional mitophagy was observed in EAC mice, along with boosting aerobic glycolysis. In addition, tumor cells exhibited higher proliferation rates, thereby stimulating cell cycle, invasion, and angiogenesis biomarkers together with suppressing proapoptotic proteins, events that might be correlated with activation of NF-κB signaling. The administration of MitoQ combated tumor cell survival and dissemination in EAC mice as evidenced by reducing tumor volumes and weights and increasing the number of necrotic areas in histopathological assessment. MitoQ also repressed tumor cell cycle, invasion, and angiogenesis via preventing cyclin D1 mRNA, MMP-1, and CD34 levels as well as VEGF protein expression. These observations were associated with the abrogation of mtROS overproduction and enhancement of the mitophagy proteins, PINK1/Parkin levels, followed by inhibition of NADH dehydrogenase. Notably, NF-κB signaling was modulated. SignificanceThis study suggests that MitoQ combated tumor cell survival and progression in EAC mice by maintaining mtROS and restoring mitophagy, thereby attenuation of NF-κB activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call