Abstract

Mitochondrial dysfunction is considered a crucial factor aggravating oocyte viability after vitrification-warming. To clarify the role of mitophagy in mitochondrial extinction of vitrified porcine oocytes, mitochondrial function, ultrastructural characteristics, mitochondria-lysosomes colocalization, and mitophagic proteins were detected with or without chloroquine (CQ) treatment. The results showed that vitrification caused mitochondrial dysfunction, including increasing reactive oxygen species production, decreasing mitochondrial membrane potential, and mitochondrial DNA copy number. Damaged mitochondrial cristae and mitophagosomes were observed in vitrified oocytes. A highly fused fluorescence distribution of mitochondria and lysosomes was also observed. In the detection of mitophagic flux, mitophagy was demonstrated as increasing fluorescence aggregation of microtubule-associated protein light chain 3B (LC3B), enhanced colocalization between LC3B, and voltage-dependent anion channels 1 (VDAC1), and upregulated LC3B-II/I protein expression ratio. CQ inhibited the degradation of mitophagosomes in vitrified oocytes, manifested as decreased mitochondria-lysosomes colocalization, increased fluorescence fraction of VDAC1 overlapping LC3B, increased LC3B-II/I protein expression ratio, and p62 accumulation. The inhibition of mitophagosomes degradation by CQ aggravated mitochondrial dysfunction, including increased oxidative damage, reduced mitochondrial function, and further led to loss of oocyte viability and developmental potentiality. In conclusion, mitophagy is involved in the regulation of mitochondrial function during porcine oocyte vitrification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.