Abstract
In nature, organisms are faced with constant nutritional options which fuel key life-history traits. Studies have shown that species can actively make nutritional decisions based on internal and external cues. Metabolism itself is underpinned by complex genomic interactions involving components from both nuclear and mitochondrial genomes. Products from these two genomes must coordinate how nutrients are extracted, used and recycled. Given the complicated nature of metabolism, it is not well understood how nutritional choices are affected by mitonuclear interactions. This is under the rationale that changes in genomic interactions will affect metabolic flux and change physiological requirements. To this end we used a large Drosophila mitonuclear genetic panel, comprising nine isogenic nuclear genomes coupled to nine mitochondrial haplotypes, giving a total of 81 different mitonuclear genotypes. We use a capillary-based feeding assay to screen this panel for dietary preference between carbohydrate and protein. We find significant mitonuclear interactions modulating nutritional choices, with these epistatic interactions also being dependent on sex. Our findings support the notion that complex genomic interactions can place a constraint on metabolic flux. This work gives us deeper insights into how key metabolic interactions can have broad implications on behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.