Abstract

Mitochondrial dynamics change mitochondrial morphological features and numbers as a part of adaptive cellular metabolism, which is vital for most eukaryotic cells and organisms. A disease or even death of an animal can occur if these dynamics are disrupted. Using large-scale genetic screening in fruit flies, we previously found the gene mitoguardin (Miga), which encodes a mitochondrial outer-membrane protein and promotes mitochondrial fusion. Knockout mouse strains were generated for the mammalian Miga homologs Miga1 and Miga2. Miga1/2-/- females show greatly reduced quality of oocytes and early embryos and are subfertile. Mitochondria became clustered in the cytoplasm of oocytes from the germinal-vesicle stage to meiosis II; production of reactive oxygen species increased in mitochondria and caused damage to mitochondrial ultrastructures. Additionally, reduced ATP production, a decreased mitochondrial-DNA copy number, and lower mitochondrial membrane potential were detected in Miga1/2-/- oocytes during meiotic maturation. These changes resulted in low rates of polar-body extrusion during oocyte maturation, reduced developmental potential of the resulting early embryos, and consequently female subfertility. We provide direct evidence that MIGA1/2-regulated mitochondrial dynamics is crucial for mitochondrial functions, ensure oocyte maturation, and maintain the developmental potential.

Highlights

  • In mammalian females, oocytes are arrested at the germinal vesicle (GV) stage of meiosis I and are stored in ovarian follicles for years or even decades

  • Oocyte energy metabolism increases due to the requirements of multiple physiological events, such as GV breakdown (GVBD), spindle formation, chromosome alignment and separation, and polar-body extrusion (PBE) [2]

  • Mitochondrial functions strongly correlate with mitochondrial structure and morphology [22, 23]

Read more

Summary

Introduction

Oocytes are arrested at the germinal vesicle (GV) stage of meiosis I and are stored in ovarian follicles for years or even decades. Insulin www.impactjournals.com/oncotarget resistance was found to disrupt mitochondrial function by reducing mtDNA copy numbers and ATP levels in mouse MII oocytes. MIGA1/2 regulate mitochondrial dynamics and functions during oocyte meiosis and embryonic development.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.