Abstract

The worm-shaped, shell-less aplacophoran molluscs Caudofoveata and Solenogastres have recently received attention as part of the clade Aculifera, but relationships within these two lineages are still largely unknown. Here, we use complete mitochondrial genomes to shed light on higher-level relationships within Caudofoveata. Mitochondrial genomes have been sequenced for many diverse molluscs, but only two mitochondrial genomes from aplacophoran molluscs (the caudofoveates Scutopus ventrolineatus and Chaetoderma nitidulum) are available to date. We sequenced and assembled complete or near complete mitochondrial genomes of five additional species of Caudofoveata (Falcidens acutargatus, Falcidens halanychi, Scutopus robustus, Psilodens balduri and Spathoderma clenchi) and one species of Solenogastres (Neomenia carinata) for comparison to available mitochondrial genomes of aculiferans. Comparison of mitochondrial gene order among different lineages revealed a highly conserved order of protein coding genes corresponding to the hypothesized ancestral gene order for Mollusca. Unique arrangements of tRNAs were found among lineages of aculiferan molluscs as well as among caudofoveate taxa. Phylogenetic analyses of amino acid sequences for the 13 protein-coding genes recovered a monophyletic Aplacophora. Within Caudofoveata, Chaetodermatidae, but not Limifossoridae, was recovered monophyletic. Taken together, our results suggest that mitochondrial genomes can serve as useful molecular markers for aculiferan phylogenetics, especially for more recent phylogenetic events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call