Abstract

AbstractSpinner dolphins (Stenella longirostris) and pantropical spotted dolphins (S. attenuata) show high intraspecific morphological diversity and endemic subspecies in the eastern tropical Pacific Ocean (ETP). Previous studies of mitochondrial DNA have found low genetic differentiation among most of these groups, possibly due to demographic factors, ongoing gene flow, and/or recent divergence. These species were heavily depleted due to bycatch in the ETP yellowfin tuna fishery. Because understanding population structure is important for accurate management of the recovery of these species, we collected whole mitochondrial genome sequences from 104 spinner and 76 spotted dolphins to test structure hypotheses at multiple hierarchical taxonomic levels. Results show differences between subspecies of spinner and spotted dolphins, but no support for the division of existing offshore stocks of spotted dolphins. We compare these results to previous results of genome‐wide nuclear SNP data and suggest high haplotype diversity, female dispersal, and/or relative power of the two data sets explains the differences observed. Interestingly, increasing the amount of mitochondrial data (base pairs and genes) did not increase ability to delimit population units. This study supports a genetic basis for management units at the subspecies level, and provides critical information for mitigating historical and continued fisheries impacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.