Abstract

Neoceratodus forsteri: is a freshwater species of Dipnoan currently listed as ‘vulnerable to extinction’ under Australian legislation. The species is restricted to at least two indigenous riverine populations in southeastern Queensland, and several other putatively translocated populations. Current understanding of genetic relationships among populations is based on studies of allozymes, microsatellites and mitochondrial DNA (mtDNA) fragments. A notable feature of all these datasets was low genetic variability. Here we sequence the complete mitogenome of 71 N. forsteri individuals from five populations to improve resolution of mtDNA diversity, examine relationships among populations, and evaluate recent demographic history. We recorded 137 variable positions forming 41 haplotypes in the 16,573 bp mitogenome alignment. Strong genetic structure was observed among riverine samples (global ΦST = 0.342) in a pattern consistent with translocation history. Tinana Creek was confirmed as an isolated and genetically unique subpopulation that should be recognized as a distinct management unit. Two previously unreported mtDNA clades (0.46% mean divergence) were found and suggest that genetic exchange among coastal catchments may have been facilitated by riverine connections on the exposed continental shelf during the late Pleistocene. Extended Bayesian skyline analysis showed no evidence for recent historical change in female effective population size, and codon-based selection tests found no evidence for positive selection in coding genes. Overall, our results emphasise the utility of the full mtDNA molecule for capturing population structure in taxa with low genetic diversity. In such cases, informative variation may be scattered across disparate parts of the mitogenome. Surveying relatively short fragments of mtDNA may lead to significant underestimates of population structure when applied to threatened species with low genetic diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.