Abstract

The evolution of large vultures linked to mountainous habitats was accompanied by extreme physiological and behavioral specializations for energetically efficient flights. However, little is known on the genetic traits associated with the evolution of these obligate soaring scavengers. Mitochondrial DNA plays a vital role in regulating oxidative stress and energy production, and hence may be an important target of selection for flight performance. Herein, we characterized the first mitogenomes of the Andean and California condors, the world’s heaviest flying birds and the only living representatives of the Vultur and Gymnogyps genus. We reconstructed the phylogenetic relationships and evaluated possible footprints of convergent evolution associated to the life-history traits and distributional range of vultures. Our phylogenomic analyses supported the independent evolution of vultures, with the origin of Cathartidae in the early Paleogene (~ 61 Mya), and estimated the radiation of extant condors during the late Miocene (~ 11 Mya). Selection analyses indicated that vultures exhibit signals of relaxation of purifying selection relative to other accipitrimorph raptors, possibly indicating the degeneration of flapping flight ability. Overall, our results suggest that the extreme specialization of vultures for efficient soaring flight has compensated the evolution of large body sizes mitigating the selection pressure on mtDNA.

Highlights

  • The evolution of large vultures linked to mountainous habitats was accompanied by extreme physiological and behavioral specializations for energetically efficient flights

  • Selective analyses in Andean sparrows (Zonotrichia capensis) showed an elevational cline related to mt-haplotype frequency, but not with nuclear m­ arkers[5], while a single mtDNA mutation was found to contribute to the exceptional ability of the bar-headed geese (Anser indicus) to migrate over the H­ imalayas[4] and recent mitogenomic analysis revealed evidence of polygenic selection related to mitochondrial efficiency in high altitude ­Galliforms[6]

  • Recent nuclear genomic analyses showed that Falconiformes excluded the Turkey vulture (Cathartes aura), and suggested that Cathartidae split from a common ancestor of their sister group Accipitridae at some point between the late Cretaceous and early Paleogene or even ­later[10,11]

Read more

Summary

Introduction

The evolution of large vultures linked to mountainous habitats was accompanied by extreme physiological and behavioral specializations for energetically efficient flights. The mitochondrial genome of the Andean and California condor was 16.808 and 16.870 bp in length, respectively, containing all 37 genes typical of vertebrates, including 22 tRNAs, 2 rRNAs, 13 PCGs, and a control region (Fig. 1).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.