Abstract

DNA synthesis of WF-1 fibroblasts derived from a patient with Werner's syndrome was stimulated by fetal calf serum and adult human serum but not by various mitogens including epidermal growth factor, platelet-derived growth factor (PDGF), fibroblast growth factor, insulin and 12-O-tetradecanoylphorbol-13-acetate (TPA). To clarify the cause of nonresponsiveness to these mitogens, we compared the rate of protein phosphorylation in normal fibroblasts HF-O and Werner's WF-1 cells. PDGF and TPA enhanced the phosphorylation of a Mr 80 K protein, which is known to be a substrate for protein kinase C, both in HF-O and WF-1 cells. This indicates that the pathway involving PDGF receptor, phosphatidylinositol turnover and protein kinase C activation is operational in WF-1 cells. Several species of phosphoproteins of Mr 250 K, 135 K, 110 K, 78 K and 42 K were detected in normal HF-O cells by immunoprecipitation using an anti-phosphotyrosine antibody. The same species of phosphoproteins were detected in Werner's WF-1 cells at passage 6, but only when treated with various mitogens and were not detected in WF-1 cells at passage 10 even after the PDGF- or TPA-treatment. These results suggest that the reduction of phosphorylation of these target proteins may be in part responsible for the diminished mitogenic responsiveness of Werner's fibroblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.