Abstract
Neurotrophins have definitive roles in the growth/maintenance of neuronal populations, but their function in malignant gliomas is unknown. The ability for nerve growth factor (NGF) to serve as a mitogenic agent was investigated in several human glioblastoma multiforme (GBM) cell lines, including U251, U87, and U373. In a serum-free medium, the addition of NGF (200 ng/ml) to these cell lines increased cell counts over controls, after 3 days in culture by 9%, 16%, and 33%, respectively. Dose-dependent increases in cell counts and [3H]thymidine uptake were found in the more rigorously investigated U373 cell line. Proteins for both the high affinity NGF-specific tyrosine kinase binding site (p140TrkA; TrkA) and the low affinity neurotrophin (p75NTR) receptor were present in all three GBM cell lines. TrkA mRNA was identified in U373 (only cell line studied). NGF-stimulated proliferation was inhibited in a dose-dependent fashion by K252a, a blocker of Trk-induced receptor kinases. NGF, measured by ELISA, was detectable in all GBM cell lines even after 7 days of growth in serum-free medium. These data suggest that GBM cell growth can be enhanced by NGF acting via Trk receptor phosphorylation. Future studies of antiproliferative therapies should consider agents directed against intracellular Trk signaling cascades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.