Abstract

This study investigates the role of extracellular signal-regulated kinases (ERKs) in angiotensin II (Ang II)-generated intracellular second messengers (cytosolic free Ca2+ concentration, ie, [Ca2+]i, and pHi) and in contraction in isolated vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) and control Wistar Kyoto rats (WKY) using the selective mitogen-activated protein (MAP)/ERK inhibitor, PD98059. VSMCs from mesenteric arteries were cultured on Matrigel basement membrane matrix. These cells, which exhibit a contractile phenotype, were used to measure [Ca2+]i, pHi, and contractile responses to Ang II (10(-12) to 10(-6) mol/L) in the absence and presence of PD98059 (10(-5) mol/L). [Ca2+]i and pHi were measured by fura-2 and BCECF methodology, respectively, and contraction was determined by photomicroscopy. Ang II-stimulated ERK activity was measured by Western blot analysis using a phospho-specific ERK-1/ERK-2 antibody and by an MAPK enzyme assay. Ang II increased [Ca2+]i and pHi and contracted cells in a dose-dependent manner. Maximum Ang II-elicited contraction was greater (P<0.05) in SHR (41.9+/-5.1% reduction in cell length relative to basal length) than in WKY (28.1+/-3.0% reduction in cell length relative to basal length). Basal [Ca2+]i, but not basal pHi, was higher in SHR compared with WKY. [Ca2+]i and pHi effects of Ang II were enhanced (P<0.05) in SHR compared with WKY (maximum Ang II-induced response [Emax] of [Ca2+]i, 576+/-24 versus 413+/-43 nmol/L; Emax of pHi, 7.33+/-0.01 versus 7.27+/-0.03, SHR versus WKY). PD98059 decreased the magnitude of contraction and attenuated the augmented Ang II-elicited contractile responses in SHR (Emax,19. 3+/-3% reduction in cell length relative to basal length). Ang II-stimulated [Ca2+]i (Emax, 294+/-55 nmol/L) and pHi (Emax, 7. 27+/-0.04) effects were significantly reduced by PD98059 in SHR. Ang II-induced ERK activity was significantly greater (P<0.05) in SHR than in WKY. In conclusion, Ang II-stimulated signal transduction and associated VSMC contraction are enhanced in SHR. MAP/ERK inhibition abrogated sustained contraction and normalized Ang II effects in SHR. These data suggest that ERK-dependent signaling pathways influence contraction and that they play a role in vascular hyperresponsiveness in SHR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call