Abstract

In advanced Parkinson's disease, l-DOPA treatment causes the appearance of abnormal involuntary movements or l-DOPA-induced dyskinesia (LID). LID results in part from l-DOPA-induced activation of extracellular signal-regulated kinase (ERK) in the dopamine-denervated striatum. Activated ERK triggers nuclear responses, including phosphorylation of mitogen- and stress-activated protein kinase 1 (MSK1) and histone H3, and transcription of genes such as FosB. To determine the role of MSK1, wild type and MSK1 knockout mice with unilateral 6-hydroxydopamine lesion in the dorsolateral striatum were chronically treated with l-DOPA. The absence of MSK1 had no effect on the lesion or l-DOPA-induced ERK activation, but reduced l-DOPA-induced phosphorylation of histone H3 and FosB accumulation in the dopamine-denervated striatum. MSK1 deficiency also prevented the increase in Gαolf, the stimulatory α subunit of G protein coupling striatal dopamine D1 receptor to adenylyl cyclase. However, the intensity of LID was similar in MSK1-deficient and wild type mice. In conclusion, l-DOPA-induced activation of MSK1 contributes to histone H3 phosphorylation, induction of FosB, and Gαolf up-regulation but appears not to be necessary for the development of LID.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.