Abstract

Background:In this study a new novel nanomicelle (TPH) sco-loaded with triphenylphosphine (TPP)-Pluronic F127-hyaluronic acid (HA) and Paclitaxel (PTX) has been designed to treat multidrug resistant hepatocellular carcinoma (HCC).Methods:TPH was initially synthesized by ester bond formation with mitochondria-targeting TPP agent and TPH nanomicelles loaded with PTX (TPH/PTX) had outstanding physical characteristics in human multi drug-resistant HCC cell line Bel7402/5-FU. Cytotoxicity and hemocompatibility assessments, nanomicelle cellular absorption and mitochondrial targeting, andin vivoxenograft imaging was used to evaluate that the nonemicells delivered into target cell and components.Results:The results of fluorescence test showed that TPP could promote the fusion of nanomicells to human multi drugresistant HCC cell line Bel7402/5-FU, and targeted the mitochondria, and also improved the targeting and retention of drugs in liver tumors. The results of cell efficacy showed that TPH/PTX induced a strong apoptosis effect, which could significantly reduce the mitochondrial membrane Zeta potential, increase the level of intracellular ROS and the release of Caspase-3, significantly enhanced the pro-apoptotic protein (Bcl-2), decrease the expression level of anti-apoptotic protein (Bax).Conclusion:TPH/PTX has a promising mitochondrial targeting function, and can enhance the effect of drugs on promoting apoptosis of drug resistant HCC cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.