Abstract

Betulin and betulinic acid have been widely studied for their anticancer activities. However, their further development is limited due to low bioavailability, poor aqueous solubility, and limited intracellular accumulation. In the present study, a triphenylphosphonium cation moiety was linked to betulin and betulinic acid to specifically target them to cancer cell mitochondria. Biological characterization established that uptake of mitochondria-targeted compound 1a in the mitochondria of cancer cells was increased compared to betulin. The mitochondria-targeted derivatives of betulin and betulinic acid showed stronger cytotoxicity than their parent drugs and exhibited more cytotoxic effects in cancer cells than normal cells. The mechanisms may involve the mitochondrial apoptotic pathway, probably caused by the induction of reactive oxygen species production and reducing mitochondrial membrane potential. More importantly, 1a significantly inhibited cancer cell proliferation and migration in an in vivo zebrafish xenograft model. Collectively, these results encourage further study of 1a analogs as anticancer agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.