Abstract

Mitochondrial dysfunction, resulting from the disruption of calcium homeostasis and the generation of toxic reactive oxygen species, is a central process leading to neuronal injury and death following acute CNS insults. Interventions aimed at preventing disturbances in mitochondrial function have therefore become targets of intense investigation. Mitochondrial uncoupling is a condition in which electron transport is disconnected from the production of ATP. As a consequence, there is a decrease in the mitochondrial membrane potential, which can temporarily decrease calcium influx and attenuate free radical formation. The potential use of pharmacological agents with uncoupling properties may provide a novel therapeutic approach for the treatment of acute neuronal injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.