Abstract

Neuronal postsynaptic currents consume most of the brain's energy supply. Delineating how neurons control the distribution, morphology and function of the energy-producing mitochondria that fuel synaptic communication is therefore important for our understanding of nervous system function and pathology. Here we review recent insights into the molecular mechanisms that control activity-dependent regulation of mitochondrial trafficking, morphology and activity at excitatory synapses. We also consider some implications of this regulation for synaptic function and plasticity and discuss how this may contribute to synaptic dysfunction and signalling in neurological disease, with a focus on Alzheimer's disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.