Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic contaminant that may cause cardiotoxicity in animals and humans. However, little is known about the underlying mechanism by which it affects the organelle toxicity in cardiomyocytes during the cardiogenesis. Our previous proteomic study showed that differences of protein expression mainly existed in mitochondria of cardiomyocytes differentiated from embryonic stem (ES) cells after exposure to PFOS. Here, we focused on mitochondrial toxicity of PFOS in ES cell-derived cardiomyocytes. The cardiomyogenesis from ES cells in vitro was inhibited, and the expression of L-type Ca2+ channel (LTCC) was decreased to interrupt [Ca2+]c transient amplitude in cardiomyocytes after PFOS treatment. Transmission electron microscope revealed that swollen mitochondrion with vacuole in PFOS-treated cells. Meanwhile, mitochondrial transmembrane potential (ΔΨm) was declined and ATP production was lowered. These changes were related to the increased EGFR phosphorylation, activated Rictor signaling, then mediated HK2 binding to mitochondrial membrane. Furthermore, PFOS reduced the interaction of IP3R-Grp75-VDAC and accumulated intracellular fatty acids by activating Rictor, thereby attenuating PGC-1α and Mfn2 expressions, then destroying mitochondria-associated endoplasmic reticulum membrane (MAM), which resulted in the decrease of [Ca2+]mito transient amplitude triggered by ATP. In conclusion, mitochondrial structure damages and abnormal Ca2+ shuttle were the important aspects in PFOS-induced cardiomyocytes toxicity from ES cells by activating Rictor signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.