Abstract
Plant mitochondrial (mt) genomes have long been known to evolve slowly in sequence. Here we show remarkable departure from this pattern of conservative evolution in a genus of flowering plants. Substitution rates at synonymous sites vary substantially among lineages within Plantago. At the extreme, rates in Plantago exceed those in exceptionally slow plant lineages by approximately 4,000-fold. The fastest Plantago lineages set a new benchmark for rapid evolution in a DNA genome, exceeding even the fastest animal mt genome by an order of magnitude. All six mt genes examined show similarly elevated divergence in Plantago, implying that substitution rates are highly accelerated throughout the genome. In contrast, substitution rates show little or no elevation in Plantago for each of four chloroplast and three nuclear genes examined. These results, combined with relatively modest elevations in rates of nonsynonymous substitutions in Plantago mt genes, indicate that major, reversible changes in the mt mutation rate probably underlie the extensive variation in synonymous substitution rates. These rate changes could be caused by major changes in any number of factors that control the mt mutation rate, from the production and detoxification of oxygen free radicals in the mitochondrion to the efficacy of mt DNA replication and/or repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.