Abstract

Aging is the major risk factor for Alzheimer's disease (AD). Mitochondrial dysfunction and neuronal network hyperexcitability are two age-related alterations implicated in AD pathogenesis. We found that levels of the mitochondrial protein deacetylase sirtuin-3 (SIRT3) are significantly reduced, and consequently mitochondria protein acetylation is increased in brain cells during aging. SIRT3-deficient mice exhibit robust mitochondrial protein hyperacetylation and reduced mitochondrial mass during aging. Moreover, SIRT3-deficient mice exhibit epileptiform and burst-firing electroencephalogram activity indicating neuronal network hyperexcitability. Both aging and SIRT3 deficiency result in increased sensitivity to kainic acid-induced seizures. Exposure of cultured cerebral cortical neurons to amyloid β-peptide (Aβ) results in a reduction in SIRT3 levels and SIRT3-deficient neurons exhibit heightened sensitivity to Aβ toxicity. Finally, SIRT3 haploinsufficiency in middle-aged App/Ps1 double mutant transgenic mice results in a significant increase in Aβ load compared with App/Ps1 double mutant mice with normal SIRT3 levels. Collectively, our findings suggest that SIRT3 plays an important role in protecting neurons against Aβ pathology and excitotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.