Abstract

During the evolution of the eukaryotic cell, genes encoding proteins involved in the metabolism of mitochondrial DNA (mtDNA) have been transferred from the endosymbiont into the host genome. Mitochondrial single-stranded DNA-binding (mtSSB) proteins serve as an excellent argument supporting this aspect of the endosymbiotic theory. The crystal structure of the human mtSSB, together with an abundance of biochemical and genetic data, revealed several exciting features of mtSSB proteins and enabled a detailed comparison with their prokaryotic counterparts. Moreover, identification of a novel member of the mtSSB family, mitochondrial telomere-binding protein of the yeast Candida parapsilosis, has raised interesting questions regarding mtDNA metabolism and evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.