Abstract

During an attempt to purify the peroxisomal acyl-CoA oxidases from human liver and kidney, we discovered a novel short-chain acyl-CoA oxidase, which was well separated from the known peroxisomal oxidases on various chromatographic columns. However, further experiments demonstrated that the novel oxidase is identical with the mitochondrial short-chain acyl-CoA dehydrogenase. (1) Subcellular fractionation revealed that the short-chain acyl-CoA oxidase is present in mitochondria and absent from peroxisomes. (2) The molecular mass (43 kDa) of the subunit of the purified oxidase was similar to that reported for the dehydrogenase. (3) The substrate spectrum of the oxidase was comparable with that described for the dehydrogenase. (4) On column chromatography, the oxidase and dehydrogenase activities co-eluted. Our results indicate that, in the absence of suitable electron acceptors, the short-chain acyl-CoA dehydrogenase is capable of transferring electrons directly to molecular oxygen, yielding potentially harmful H2O2. This raises the question as to whether the dehydrogenase might function as an oxidase in conditions in which the activity of the electron-transport chain is decreased, such as reperfusion after ischaemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.