Abstract

BackgroundMitogenome diversity is staggering among early branching animals with respect to size, gene density, content and order, and number of tRNA genes, especially in cnidarians. This last point is of special interest as tRNA cleavage drives the maturation of mitochondrial mRNAs and is a primary mechanism for mt-RNA processing in animals. Mitochondrial RNA processing in non-bilaterian metazoans, some of which possess a single tRNA gene in their mitogenomes, is essentially unstudied despite its importance in understanding the evolution of mitochondrial transcription in animals.ResultsWe characterized the mature mitochondrial mRNA transcripts in a species of the octocoral genus Sinularia (Alcyoniidae: Octocorallia), and defined precise boundaries of transcription units using different molecular methods. Most mt-mRNAs were polycistronic units containing two or three genes and 5′ and/or 3′ untranslated regions of varied length. The octocoral specific, mtDNA-encoded mismatch repair gene, the mtMutS, was found to undergo alternative polyadenylation, and exhibited differential expression of alternate transcripts suggesting a unique regulatory mechanism for this gene. In addition, a long noncoding RNA complementary to the ATP6 gene (lncATP6) potentially involved in antisense regulation was detected.ConclusionsMt-mRNA processing in octocorals possessing a single mt-tRNA is complex. Considering the variety of mitogenome arrangements known in cnidarians, and in general among non-bilaterian metazoans, our findings provide a first glimpse into the complex mtDNA transcription, mt-mRNA processing, and regulation among early branching animals and represent a first step towards understanding its functional and evolutionary implications.

Highlights

  • Mitogenome diversity is staggering among early branching animals with respect to size, gene density, content and order, and number of tRNA genes, especially in cnidarians

  • ATP synthase (ATP6), ATP synthase (ATP8), cytochrome oxidase (COII), cytochrome oxidase (COIII) and ­tRNAMet were encoded on the L-strand

  • All protein-coding genes (PCGs) had ATG as the start codon, while the stop codons TAA and TAG were predominant among PCGs; cytochrome oxidase (COI) was an exception, having an incomplete termination codon (T)

Read more

Summary

Introduction

Mitogenome diversity is staggering among early branching animals with respect to size, gene density, content and order, and number of tRNA genes, especially in cnidarians. This last point is of special interest as tRNA cleavage drives the maturation of mitochondrial mRNAs and is a primary mechanism for mt-RNA processing in animals. The metazoan mitochondrial genome underwent reductive evolution, transferring most of its genome content to the nucleus [4, 5] The majority of these alterations in mitogenome content include the loss of ribosomal proteins and some tRNA genes, changes in the genetic code, disappearance of introns, and further compaction of mitochondrial DNA (mtDNA).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call