Abstract
BackgroundMitochondrial dysfunction and metabolic reprogramming are key features of hepatocellular carcinoma (HCC). Despite its significance, the precise underlying mechanism behind these processes has not been fully elucidated. The latest investigations, along with our previous discoveries, have substantiated the significant role of mitochondrial ribosomal protein L12 (MRPL12), a newly identified gene involved in mitochondrial transcription regulation, in the modulation of mitochondrial metabolism. Nevertheless, the role of MRPL12 in tumorigenesis has yet to be investigated. MethodsThe expression of MRPL12 in HCC was assessed using an online database. Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) were employed to determine the expression of MRPL12 in HCC tissues, patient-derived organoid (PDO), and cell lines. The correlation between MRPL12 expression and clinicopathological features, as well as prognosis, was examined using tissue microarray analysis. An in vivo subcutaneous tumor xenograft model, gene knockdown or overexpression assay, chromatin immunoprecipitation (ChIP) assay, Seahorse XF96 assay, and cell function assay were employed to investigate the biological function and potential molecular mechanism of MRPL12 in HCC. ResultsA significant upregulation of MRPL12 was observed in HCC cells, PDO and patient tissues, which correlated with advanced tumor stage, higher grade and poor prognosis. MRPL12 overexpression promoted cell proliferation, migration, and invasion in vitro, as well as tumorigenicity in vivo, whereas MRPL12 knockdown showed the opposite effect. MRPL12 knockdown also inhibited the capacity of organoids proliferation capacity. Furthermore, MRPL12 was found to be crucial for maintaining mitochondrial homeostasis. Both gain and loss-of-function experiments targeting MRPL12 in HCC cells altered oxidative phosphorylation (OXPHOS) and mitochondrial DNA content. Notably, suppression of OXPHOS effectively mitigates the tumor-promoting effect attributed to MRPL12 overexpression, implying the involvement of MRPL12 in HCC through the modulation of mitochondrial metabolism. Besides, Yin Yang 1 (YY1) was identified as a transcription factor responsible for regulating MRPL12, while the PI3K/mTOR pathway was found to act as an upstream regulator of YY1. MRPL12 knockdown attenuated the YY1 overexpression or PI3K/mTOR activation-induced malignant phenotype in HCC cells. ConclusionOur findings provide compelling evidence that MRPL12 is implicated in driving the malignant phenotype of HCC via regulating mitochondrial metabolism. Moreover, the aberrant expression of MRPL12 in HCC is mediated by the upstream PI3K/mTOR/YY1 pathway. These results highlight the potential of targeting MRPL12 as a promising therapeutic strategy for the treatment of HCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.