Abstract

In substantia nigra from patients with Parkinson's disease, there are decreased levels of reduced glutathione (GSH) and diminished activities of mitochondrial complex I and α-ketoglutarate dehydrogenase (α-KGDH), along with increased activity of superoxide dismutase (SOD). However, the interrelationship among these events is uncertain. We now report the effect of decreased brain GSH levels on SOD and mitochondrial respiratory enzyme activity in rat brain. In addition, we have investigated the ability of thioctic acid, an endogenous antioxidant, to alter these parameters. Unilateral or bilateral intracerebroventricular (ICV) administration of buthionine sulphoximine (BSO; 1 × 3.2 mg or 2 × 1.6 mg) over a 48-hr period reduced cortical GSH by 55–70%. There was no change in the activity of complex I, II/III, or IV or of citrate synthase in cortex. Similarly, there was no alteration of mitochondrial or cytosolic SOD activity. Thioctic acid (50 or 100 mg/kg IP) alone had no effect on cortical GSH levels in control animals and did not reverse the decrease in GSH levels produced by unilateral or bilateral ICV BSO administration. Thioctic acid (50 or 100 mg/kg IP) had no overall effect on complex I, II/III, or IV or on citrate synthase activity in control animals. Thioctic acid also did not alter cortical mitochondrial respiratory enzyme activity in BSO-treated rats. At the lower dose, thioctic acid tended to increase mitochondrial and cytosolic SOD activity in control animals and in BSO-treated rats. However, at the higher dose, thioctic acid tended to decrease mitochondrial SOD activity. Overall, there was no consistent effect of thioctic acid (50 or 100 mg/kg IP) on SOD activity in control or BSO-treated animals. This study shows that BSO-induced glutathione deficiency does not lead to alterations in mitochondrial respiratory enzyme activity or to changes in SOD activity. GSH depletion in Parkinson's disease therefore may not account for the alterations occurring in complex I and mitochondrial SOD in substantia nigra. Thioctic acid did not alter brain GSH levels or mitochondrial function. Interestingly, however, it did produce some alterations in SOD activity, which may reflect either its antioxidant activity or its ability to act as a thiol-disulphide redox couple.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call