Abstract

BackgroundAccumulated evidence suggests that hydrogen peroxide (H2O2) generated in cells during insulin stimulation plays an integral role in insulin receptor signal transduction. The role of insulin-induced H2O2 in neuronal insulin receptor activation and the origin of insulin-induced H2O2 in neurons remain unclear. The aim of the present study is to test the following hypotheses (1) whether insulin-induced H2O2 is required for insulin receptor autophosphorylation in neurons, and (2) whether mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in insulin receptor autophosphorylation in neurons.ResultsInsulin stimulation elicited rapid insulin receptor autophosphorylation accompanied by an increase in H2O2 release from cultured cerebellar granule neurons (CGN). N-acetylcysteine (NAC), a H2O2 scavenger, inhibited both insulin-stimulated H2O2 release and insulin-stimulated autophosphorylation of insulin receptor. Inhibitors of respiratory chain-mediated H2O2 production, malonate and carbonyl cyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP), inhibited both insulin-stimulated H2O2 release from neurons and insulin-stimulated autophosphorylation of insulin receptor. Dicholine salt of succinic acid, a respiratory substrate, significantly enhanced the effect of suboptimal insulin concentration on the insulin receptor autophosphorylation in CGN.ConclusionResults of the present study suggest that insulin-induced H2O2 is required for the enhancement of insulin receptor autophosphorylation in neurons. The mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in the insulin receptor autophosphorylation in neurons.

Highlights

  • IntroductionThe aim of the present study is to test the following hypotheses (1) whether insulin-induced H2O2 is required for insulin receptor autophosphorylation in neurons, and (2) whether mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, playing an integral role in insulin receptor autophosphorylation in neurons

  • Accumulated evidence suggests that hydrogen peroxide (H2O2) generated in cells during insulin stimulation plays an integral role in insulin receptor signal transduction

  • Insulin-induced H2O2 is required for the enhancement of the insulin receptor autophosphorylation in neurons To examine whether insulin stimulates H2O2 production in cultured cerebellar granule neurons (CGN), we measured H2O2 accumulation for 1 min in the incubation medium of CGN cultures, in the absence or presence of insulin

Read more

Summary

Introduction

The aim of the present study is to test the following hypotheses (1) whether insulin-induced H2O2 is required for insulin receptor autophosphorylation in neurons, and (2) whether mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, playing an integral role in insulin receptor autophosphorylation in neurons. Accumulated evidence suggests that hydrogen peroxide (H2O2) generated in cells during insulin stimulation plays an integral role in insulin receptor signal transduction [1-. There are experimental data that insulin-induced reactive oxygen species (ROS) and H2O2 play a role in the activation of insulin signaling in neuroblastomas [12,22]. The role of insulin-induced H2O2 in neuronal insulin receptor activation and the origin of insulin-induced H2O2 in neurons remain unclear

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.