Abstract

Mass spectrometric analysis shows that assimilation of inorganic nitrogen (NH(4) (+), NO(2) (-), NO(3) (-)) by N-limited cells of Selenastrum minutum (Naeg.) Collins results in a stimulation of tricarboxylic acid cycle (TCA cycle) CO(2) release in both the light and dark. In a previous study we have shown that TCA cycle reductant generated during NH(4) (+) assimilation is oxidized via the cytochrome electron transport chain, resulting in an increase in respiratory O(2) consumption during photosynthesis (HG Weger, DG Birch, IR Elrifi, DH Turpin [1988] Plant Physiol 86: 688-692). NO(3) (-) and NO(2) (-) assimilation resulted in a larger stimulation of TCA cycle CO(2) release than did NH(4) (+), but a much smaller stimulation of mitochondrial O(2) consumption. NH(4) (+) assimilation was the same in the light and dark and insensitive to DCMU, but was 82% inhibited by anaerobiosis in both the light and dark. NO(3) (-) and NO(2) (-) assimilation rates were maximal in the light, but assimilation could proceed at substantial rates in the light in the presence of DCMU and in the dark. Unlike NH(4) (+), NO(3) (-) and NO(2) (-) assimilation were relatively insensitive to anaerobiosis. These results indicated that operation of the mitochondrial electron transport chain was not required to maintain TCA cycle activity during NO(3) (-) and NO(2) (-) assimilation, suggesting an alternative sink for TCA cycle generated reductant. Evaluation of changes in gross O(2) consumption during NO(3) (-) and NO(2) (-) assimilation suggest that TCA cycle reductant was exported to the chloroplast during photosynthesis and used to support NO(3) (-) and NO(2) (-) reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call