Abstract

Mitochondrial Ca 2+ accumulation and the formation of reactive oxygen species are processes dependent on the electron transport system. The production of superoxide by respiring rat heart mitochondria was decreased by either chelating extramitochondrial Ca 2+ with EGTA or by blocking mitochondrial Ca 2+ uptake with ruthenium red. Mitochondrial experiments with doxorubicin showed an enhanced stimulation of reactive oxygen species, which was also inhibited by EGTA or ruthenium red. Myocardial cell cultures treated with doxorubicin showed an enhanced formation of intracellular reactive oxygen species, which preceded cell damage. Ruthenium red not only attenuated the enhanced formation of intracellular reactive oxygen species, but also increased cell viability. The relationship between mitochondrial Ca 2+ transport and the formation of superoxide suggests that a disruption in mitochondrial Ca 2+ homeostasis by doxorubicin may be involved in the release of reactive oxygen species and its cardiotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.