Abstract

Mitochondria perform many important functions. Their origin can be traced back to an endosymbotic event between an archaeal host cell and an α-proteobacteria approximately 2 billion years ago [1]. Subsequently, the endosymbiont was converted into an organelle, which learned to import cytosolic proteins, a feat present-day endosymbiontic bacteria are not capable of. Today, the large majority of mitochondrial proteins are encoded in the nucleus, synthesized in the cytosol, and finally imported across the outer and/or the inner mitochondrial membranes. Protein import was one of the first—if not the first—mitochondria-specific trait to evolve. Because mitochondria are monophyletic, the expectation was that the machineries that mediate mitochondrial protein import would be largely conserved. Work in trypanosomes and other organisms in recent years has shown that this is not the case [2, 3]. It is the aim of this review to summarize where we find major deviations in the trypanosomal mitochondrial protein import machineries when compared to the best-studied system, that of the yeast Saccharomyces cerevisiae.

Highlights

  • OPEN ACCESSTheir origin can be traced back to an endosymbotic event between an archaeal host cell and an α-proteobacteria approximately 2 billion years ago [1]

  • Work in trypanosomes and other organisms in recent years has shown that this is not the case [2, 3]. It is the aim of this review to summarize where we find major deviations in the trypanosomal mitochondrial protein import machineries when compared to the best-studied system, that of the yeast Saccharomyces cerevisiae

  • Compositional analysis of the single trypanosomal TIM complex reveals that it consists of six integral membrane proteins of which only TbTim17 shows homology to any subunits of the yeast the inner membrane 23 (TIM23) and TIM22 complexes, respectively [22] (Fig 3)

Read more

Summary

OPEN ACCESS

Their origin can be traced back to an endosymbotic event between an archaeal host cell and an α-proteobacteria approximately 2 billion years ago [1]. The expectation was that the machineries that mediate mitochondrial protein import would be largely conserved. Work in trypanosomes and other organisms in recent years has shown that this is not the case [2, 3]. It is the aim of this review to summarize where we find major deviations in the trypanosomal mitochondrial protein import machineries when compared to the best-studied system, that of the yeast Saccharomyces cerevisiae

How different are the mitochondrial protein import receptors?
One or two TIM complexes?
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.