Abstract

Mitochondria are a major source of intracellular reactive oxygen species, the production of which increases with cancer. The deleterious effects of reactive oxygen species may be responsible for the impairment of mitochondrial function observed during various pathophysiological states associated with oxidative stress and cancer. These organelles are also targets of oxidative damage (oxidation of mitochondrial DNA, lipids, protein). An important factor for protein maintenance in the presence of oxidative stress is enzymatic reversal of oxidative modifications and/or protein degradation. Failure of these processes is likely a critical component of the cancer process. Mitochondrial proteases degrade misfolded and non-assemble polypeptides, thus performing quality control surveillance in the organelle. Mitochondrial proteases may be directly involved in cancer development as recently shown for HtrA2/Omi or may regulate crucial mitochondrial molecule such as cytochrome c oxidase 4 a subunit of the cytochrome c oxidase complex degraded by the Lon protease. Thus, the role of mitochondrial proteases is further addressed in the context of oxidative stress and cancer. This article is part of a Special Issue entitled: Bioenergetics of Cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.