Abstract
To simulate ischemia and reperfusion, cultured rat hepatocytes were incubated in anoxic buffer at pH 6.2 for 4 h and reoxygenated at pH 7.4. During anoxia, intracellular pH (pHi) decreased to 6.3, mitochondria depolarized, and ATP decreased to < 1% of basal values, but the mitochondrial permeability transition (MPT) did not occur as assessed by confocal microscopy from the redistribution of cytosolic calcein into mitochondria. Moreover, cell viability remained > 90%. After reperfusion at pH 7.4, pHi returned to pH 7.2, the MPT occurred, and most hepatocytes lost viability. In contrast, after reperfusion at pH 6.2 or with Na(+)-free buffer at pH 7.4, pHi did not rise and cell viability remained > 80%. After acidotic reperfusion, the MPT did not occur. When hepatocytes were reperfused with cyclosporin A (0.5-1 microM) at pH 7.4, the MPT was prevented and cell viability remained > 80%, although pHi increased to 7.2. Reperfusion with glycine (5 mM) also prevented cell killing but did not block recovery of pHi or the MPT. Retention of cell viability was associated with recovery of 30-40% of ATP. In conclusion, preventing the rise of pHi after reperfusion blocked the MPT, improved ATP recovery, and prevented cell death. Cyclosporin A also prevented cell killing by blocking the MPT without blocking recovery of pHi. Glycine prevented cell killing but did not inhibit recovery of pHi or the MPT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.