Abstract

Accumulating evidence suggests that Eimeria tenella severely damages the intestinal mucosa in infected poultry, resulting in deadly haemorrhagic typhlocolitis and major economic losses. Damage to host tissue is believed to arise mainly from apoptosis, which is, in general, intimately related to mitochondrial function. However, it is unclear whether mitochondria-dependent apoptotic pathways are specifically involved in parasite-induced apoptosis of chick embryo cecal epithelial cells. Because the mitochondrial permeability transition pore (MPTP) and caspase-9 are important elements in these pathways, we studied the effects of their respective inhibitors (i.e., cyclosporine A [CsA] and Z-LEHD-FMK, respectively) in primary cultures of chicken embryonic cecum epithelial cells using histopathological techniques, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assays, flow cytometry (FCM) and ELISA. Results indicated that the inhibitors significantly decreased (p < 0.01) DNA injury, apoptosis and caspase-9 and caspase-3 activity of chick embryo cecal epithelial cells at 24, 48, 72, 96 and 120h after E. tenella infection. Thus, our data supported that mitochondria-dependent apoptotic pathways were involved in apoptosis of parasitised chick embryo cecal epithelial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call