Abstract

Rats submitted to high altitude (Cerro de Pasco, Perú, 4,340 m, Po(2) = 12.2 kPa) for up to 84 days showed a physiological adaptive response with decreased body weight gain (15%), increased right ventricle weight (100%), and increased hematocrit (40%) compared with sea level animals. These classical parameters of adaptation to high altitude were accompanied by an increase in heart mitochondrial enzymes: complexes I-III activity by 34% and mitochondrial nitric oxide synthase (mtNOS) activity and expression by >75%. The hyperbolic increase for mtNOS activity during adaptation to high altitude was similar to the observed pattern for hematocrit. Hematocrit and mtNOS activity mean values correlated linearly (r(2) = 0.75, P <or= 0.05). Chronic treatment for 28 days with sildenafil (50 mg*kg(-1).day(-1)) decreased the response of mtNOS to high altitude by 25%. Conversely, N(G)-nitro-l-arginine methyl ester treatment (8.3 mg*kg(-1)*day(-1)) increased such response by 40%, whereas l-arginine treatment (106 mg*kg(-1)*day(-1)) had no effect. Nitric oxide (NO) production by mtNOS accounts for approximately 49% of total cellular NO production in sea level rats and for approximately 54% in rats exposed to high altitude for 84 days. It is concluded that mtNOS is a substantial source of cardiac NO, a factor in the adaptive response to sustained heart hypoxia that is susceptible to be modified by pharmacological treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call