Abstract

Copper (Cu), a hazardous heavy metal, can lead to toxic effects on host physiology. Recently, specific mitochondria-localized miRNAs (mitomiRs) were shown to modulate mitochondrial function, but the underlying mechanisms remain undefined. Here, we identified mitomiR-1285 as an important molecule regulating mitochondrial dysfunction and mitophagy in jejunal epithelial cells under Cu exposure. Mitochondrial dysfunction and mitophagy were the important mechanisms of Cu-induced pathological damage in jejunal epithelial cells, which were accompanied by significant increase of mitomiR-1285 in vivo and in vitro. Knockdown of mitomiR-1285 significantly attenuated Cu-induced mitochondrial respiratory dysfunction, ATP deficiency, mitochondrial membrane potential reduction, mitochondrial reactive oxygen species accumulation, and mitophagy. Subsequently, bioinformatics analysis and luciferase reporter assay demonstrated that IDH2 was a direct target of mitomiR-1285. RNA interference of IDH2 dramatically reversed the effect that mitomiR-1285 knockdown relieved mitochondrial dysfunction and mitophagy induced by Cu, and the opposite effect was shown by overexpression of IDH2. Therefore, our results suggested that mitomiR-1285 aggravated Cu-induced mitochondrial dysfunction and mitophagy via suppressing IDH2 expression. These findings identified the important mechanistic connection between mitomiRs and mitochondrial metabolism under Cu exposure, providing a new insight into Cu toxicology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call