Abstract
Disruption of mitochondrial respiration in the nematode Caenorhabditis elegans can extend lifespan. We previously showed that long-lived respiratory mutants generate elevated amounts of α-ketoacids. These compounds are structurally related to α-ketoglutarate, suggesting they may be biologically relevant. Here, we show that provision of several such metabolites to wild-type worms is sufficient to extend their life. At least one mode of action is through stabilization of hypoxia-inducible factor-1 (HIF-1). We also find that an α-ketoglutarate mimetic, 2,4-pyridinedicarboxylic acid (2,4-PDA), is alone sufficient to increase the lifespan of wild-type worms and this effect is blocked by removal of HIF-1. HIF-1 is constitutively active in isp-1(qm150) Mit mutants, and accordingly, 2,4-PDA does not further increase their lifespan. Incubation of mouse 3T3-L1 fibroblasts with life-prolonging α-ketoacids also results in HIF-1α stabilization. We propose that metabolites that build up following mitochondrial respiratory dysfunction form a novel mode of cell signaling that acts to regulate lifespan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.