Abstract

Mitochondria are responsible for coordinating cellular energy production in the vast majority of somatic cells, and every cell type in a specific state can have a distinct metabolic signature. The metabolic requirements of cells from different tissues changes as they proliferate/differentiate, and cellular metabolism must match these demands. Proliferating cells, namely cancer cells and stem cells, tend to prefer glycolysis rather than a more oxidative metabolism. This preference has been exploited for the improvement of new biotechnological and therapeutic applications. In this review, we describe mitochondrial dynamics and energy metabolism modulation during nuclear reprogramming of somatic cells, which will be essential for the development and optimization of new protocols for regenerative medicine, disease modeling and toxicological screens involving patient-specific reprogrammed cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.