Abstract

Kv1.3 is a voltage gated potassium channel located in the plasma membrane, as well as at intracellular levels, such as mitochondria (mitoKv1.3), nucleus and Golgi apparatus. The plasma membrane channel has been shown to be important for cell proliferation, while the mitochondrial counterpart has been related to modulation of cell death. Moreover, altered expression of Kv1.3 was observed in various tumors and Kv1.3 seems to be involved in development and progression of various cancerous forms. Recent experimental evidences have proved that pharmacological inhibition of the mitoKv1.3 succeeded in reducing up to 90% of tumor volume in vivo in orthotopic mouse model. Furthermore, mitoKv1.3 modulation could impact on cell proliferation as well as on regulation of intracellular signaling pathways. Indeed, the treatment with sub-lethal doses of mitoKv1.3 inhibitors can downregulate Wnt-β catenin signaling by reducing mitochondrial ATP production and triggering ER-stress. In this review, we describe the role of the mitoKv1.3 in cell death, cancer and intracellular signaling. We will discuss how pharmacological modulation of mitochondrial potassium fluxes impact on mitochondrial membrane potential, reactive oxygen species production and ATP synthesis. All these changes in mitochondrial fitness are related to cell proliferation as well as to cell death and finally on cancer development and progression, so Kv1.3 (and mitoKv1.3) could be now considered a new oncological target.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.