Abstract
ContextThe prevalence of obesity and hypertriglyceridemia is an alarming worldwide health issue. Mitochondria play a central role in these disorders as they control cell metabolism.ObjectiveThe aim of the present study was to characterize mitochondrial homeostasis in subcutaneous and visceral adipose tissue (SAT and VAT) in grade III obese patients with and without hypertriglyceridemia. Moreover, this study presents the evaluation of mitochondrial fitness as a marker for hypertriglyceridemia improvement.PatientsEight control and 12 hypertriglyceridemic (HTG) grade III obese subjects undergoing bariatric surgery were included.Main Outcome MeasuresAnthropometric and biochemical data were obtained before and 3 months after surgery. Mitochondrial homeostasis was evaluated by mitochondrial DNA (mtDNA), gene expression and protein abundance in SAT and VAT.ResultsMitophagy-related gene expression was increased in HTG SAT and VAT, while mitochondrial marker gene expression and mtDNA were decreased, indicating an altered mitochondrial homeostasis in HTG. Mitophagy protein abundance was increased in VAT of those subjects that did not improve their levels of triglycerides after bariatric surgery, whereas mitochondrial protein was decreased in the same tissue. Indeed, triglyceride levels positively correlated with mitophagy-related genes and negatively with mitochondrial content markers. Moreover, mitochondria content and mitophagy markers seem to be significant predictors of hypertriglyceridemia and hypertriglyceridemia remission.ConclusionsMitochondrial homeostasis of adipose tissue is altered in hypertriglyceridemic patients. At the protein level, mitochondria content and mitophagy are potential markers of hypertriglyceridemia remission in obese patients after bariatric surgery. These results may contribute to the implementation of a clinical approach for personalized medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Clinical Endocrinology & Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.