Abstract

Mitochondrial 12S rRNA 1555A>G mutation is one of the important causes of aminoglycoside-induced and nonsyndromic deafness. Our previous investigations showed that the A1555G mutation was a primary factor underlying the development of deafness but was insufficient to produce deafness phenotype. However, it has been proposed that mitochondrial haplotypes modulate the phenotypic manifestation of the 1555A>G mutation. Here, we performed systematic and extended mutational screening of 12S rRNA gene in a cohort of 1742 hearing-impaired Han Chinese pediatric subjects from Zhejiang Province, China. Among these, 69 subjects with aminoglycoside-induced and nonsyndromic deafness harbored the homoplasmic 1555A>G mutation. These translated to a frequency of ∼3.96% for the 1555A>G mutation in this hearing–impaired population. Clinical and genetic characterizations of 69 Chinese families carrying the 1555A>G mutation exhibited a wide range of penetrance and expressivity of hearing impairment. The average penetrances of deafness were 29.5% and 17.6%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Furthermore, the average age-of-onset for deafness without aminoglycoside exposure ranged from 5 and 30 years old, with the average of 14.5 years. Their mitochondrial genomes exhibited distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups A, B, C, D, F, G, M, N, R and Y, respectively. These indicated that the 1555A>G mutation occurred through recurrent origins and founder events. The haplogroup D accounted for 40.6% of the patient’s mtDNA samples but only 25.8% of the Chinese control mtDNA samples. Strikingly, these Chinese families carrying mitochondrial haplogroup B exhibited higher penetrance and expressivity of hearing loss. In addition, the mitochondrial haplogroup specific variants: 15927G>A of haplogroup B5b, 12338T>C of haplogroup F2, 7444G>A of haplogroup B4, 5802T>C, 10454T>C, 12224C>T and 11696G>A of D4 haplogroup, 5821G>A of haplogroup C, 14693A>G of haplogroups Y2 and F, and 15908T>C of Y2 may enhance the penetrace of hearing loss in these Chinese families. Moreover, the absence of mutation in nuclear modifier gene TRMU suggested that TRMU may not be a modifier for the phenotypic expression of the 1555A>G mutation in these Chinese families. These observations suggested that mitochondrial haplotypes modulate the variable penetrance and expressivity of deafness among these Chinese families.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call